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De Sitter Gauge Theories of Gravity 
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The two types of  de Sitter gravities are constructed with the fiber bundle technique 
and some special cases are discussed. Relations among de Sitter, Poincar6, and 
Lorentz gravity are discussed and the contraction from the de Sitter bundle to 
the Poincar6 bundle is demonstrated. Two types of  gravitational gauge field 
equations are obtained by using the de Sitter-Poincar6 and de Sitter-Lorentz 
actions. The de Sitter effect occurring in the field equations is discussed. 

1. I N T R O D U C T I O N  

Denote the de Sitter (dS) universe (with constant curvature) by the dS 
sphere S 4. According to whether the dS curvature A > 0, <0,  or =0, S 4 is 

4-- 4-- written as S~ +, SA , or So 4. The dS spheres 4+ S~ , S~ , and S 4 are isomorphic 
to cosets S0(4, 1)/S0(3, 1), S0(3, 2)/S0(3, 1), and ISO(3, 1)/S0(3, 1), 
respectively. It is apparent  that So 4 is Minkowski space. Let us denote it 
by M' .  One may consider S0(4, 1)/S0(3, 1) or S0(3,2)/S0(3, 1) as 
the sphere-pole orbit with four-dimensional projective homogeneous co- 
ordinates {~:a}={(i, ~:s} ( i = 0 ,  1,2,3) .  Let the center of  the sphere be 
the center of  projection; then 4+ 4- Sx , and Sx , regarded as the dS sphere 
rl.b~".~ b = - l / A ,  may be embedded into five-dimensional pseudo-Euclidean 

5 5 
E (3,2~, �9 �9 �9 space E(4,1~ and respectively. Here a, b, =0,  1, 2, 3, 5; ~.b = 

d i a g ( 1 , - 1 , - 1 , - 1 , - I ) ;  I = - A / [ A I .  
De Sitter groups S0(4, 1) and S0(3, 2) are the transformation groups 

of  dS spheres S~ + and S~-. Thus, S 4. and S~- have global dS invariance. 
Set S0(4,1)=-dS(4,1), S0(3,2)=-dS(3,2); then both of  them may be 
written as dS(5) symbolically. When extending the flat space-time manifold 
M '  with global Poincar6 invariance to one with the local Poincar6 invariance, 
we may extend it to Riemann-Car tan  (RC) space-time M with local Poincar6 

1physics Department,  Hubei University, Wuhan, China. 
2physics Department, Konstanz University, Konstanz, West Germany. 
3Physics Department, Haazhong Normal University, Wuhan, China. 

885 
0020-7748/90/0800-0885506.00/0 �9 1990 Plenum Publishing Corporation 



8 8 6  Shao Changgui et al. 

invariance and build Poincar6 gravity (PG) (Shao Changgui and Xu 
Banqing, 1986). But since the Poincar6 group IS0(3 ,  1) is the contraction 
of the dS group dS(5), we may extend the space-time manifold M to the 
supersurface M~(x) with local dS invariance by means of the extension of 
the gauge group IS0(3 ,  1)--> dSx(5), and then build dS gravity (dSG). Of 
course, it is usual that we localize the constant-curvature space-time mani- 
fold S 4 with global dS invariance as the supersurface M~(x) with local dS 
invariance, and then build dSG. The contraction (or extension) of the gauge 
group shall give rise to the contraction (or extension) of the bundle, and 
then the dSG is different from the PG. 

When localizing S 4 as Mx(x), the five-dimensional pseudo-Euclidean 
space E~ embedding S 4 is localized as the RC space 5 Hx(x), i.e., 

E~ 5 S 4 -~ H~(x) = -~ HA(x), Mx(x), M,(x) 

Therefore Vx ~ Mx(x), there is a dS sphere S~(x) (c  EsxlJ tangential to M,(x) 
and there is a tangent Minkowski space M ' .  The space E~b is the tangent 
space of H~(x) at point x and then we may assume MA(~) as an umbilical 
point supersurface. 

The local Lorentz and Poincar6 transformations may be realized in 
Mx'; the local dS transformations may be realized in Sx(x).4 According to 
whether the gauge transformations are realized in terms of the local moving 
frame or the vector, we may build the Lorentz frame bundle (Shao Changgui 
et al., unpublished) L ( M )  = P(M, S0(3 ,  1)) or its associated bundle EL = 
E L ( M , M ' , S O ( 3 , 1 ) , L ) ,  the Poincar6 affine frame bundle P ( M ) =  
P(M, IS0 (3 ,  1)) or its associated bundle Ep = Ep(M, M' ,  IS0(3 ,  1), P), 
and the de Sitter frame bundle dS(MA(~>)=P(MA(x), dSx(5)) or its 
associated vector endpoint (on the dS sphere) bundle Eds= 
Eds( M~(x), S~ , dSa (5), as) .  

In this article the dS frame bundle is discussed in two cases, the de 
Sitter-Lorentz (dSL) bundle and the de Sitter-Poincar6 (dSP) bundle. 

2. DE SITI'ER-LORENTZ GRAVITY DESCRIBED BY 
FIBER BUNDLE 

Let M~(x) be covered by an open covering; after introducing the natural 
frame 0~, Vxs  MA(x), its coordinates are x ~, /z =0,  1, 2, 3. Choose a dSL 

4 C frame in the projection center of the dS sphere S~(x) E~lx : 

{e'} = {el, e~} (1) 

and its dual frame 

{0 'a } = { e 'i, e '5} 



De Sitter Gauge Theories of Gravity 887 

Then we have the inner products 

(el,  e~) = 77 U = diag(1, - 1 ,  - 1 ,  - 1 )  

(e~, e ; )=  - I  

(el ,  e~) = 0 

(e' . ,  eg)= r/,b 

and we have 

O"(ej) = a~, O"(e;) = O, 0'5(e9 = O, O'5(el) = 1 

Under  this frame the dS sphere 4 SA(x) satisfies the condition of local super- 
sphere, i.e., 

' r ]ab~ 'a~  tb  = - 1 /  h, g.,. = ~ab W ' f  w,b,, , rlabr . . . . . .  w .'b = 0 

,a _ i 0} are dSL frame coefficients, where the points {~'"} ~ S4(x) and { W~ } - { V . ,  
and V~ are Lorentz vierbein fields. Here i, j , . . .  are the indices of  the 
Lorentz moving frame, and we also have 

t _ _  i i i ~' v 0" = V~ dx ~, e, - V~ 0~, V .  V~ = 8j, V .  V, = ~3 ~ 

0 'i - " ~ dx~(e'i) = V~. Because the where dx"(O~) = ~ ,  0"(ej)  = 8j, (0.)  = V . ,  
group dSx(5) keeps the bilinear metric of  Es~ invariant, one has 

d A b ~ d S ~ ( 5 )  Tla b = " t l c d A a A b  , 

In view of  the local dS invariance of MA(x), the local action of the 
gauge group dSA (5) may be realized by the local action (right action) on 
the dSL frame. Thus, we obtain the t ransformed frame 

b ! o a  e ~ = A a e b ,  = (A- I )~O 'b, A~d&(5) (2) 

Here O~(eb) -- ~ W~ dx ~, O~ W~e~, where W~ - ~b, (e~, eb) = r/~b, and 0 ~ = ~ = ~ ~ = 
0~(0~) is the component  of  0" under O,. 

Let the set {ea}lx of all dSL frames at point x ~ MA(x) under the gauge 
group dS(5) be denoted by dSLx(MA(x)) and we know that dSLx(MA(x)) is 
isomorphic to the group ds~(5), i.e., dSLA(Ma(~)) ~ dS(5). Taking the union 
dSL(MA(~)) of  dSLx(Ma(~)) for all x, i.e., 

dSL(Mx(x ) )=  [._J dSL~(M;,(x)) 
xeM~.(x) 

we obtain a dSL frame bundle (Kobayachi  and Nomizu,  1963) dSL(M~(x)) = 
P(M~(~), dS~ (5)), of  which MA(~) is the base space and dS~ (5) is the structure 
group. The frame {e~} in expression (2) may be called a dSL frame; 
dSL~(M;,(~)) is a fiber over point x. One has that Vx~  Ma(x) the bundle 
projection 17 maps the set of  frames on the fiber dSLx(M:,(x)) onto the point 
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x. The distribution of the dSL frame {ea(x)} on M~(x) is a cross section or(x) 
on the bundle;  in the dSL(Mx(x))  it gives a submanifold diffeomorphic to 
Mx(~). It is easy to know that 

dim dSL(Mx(~)) = dim Mx(x)+ dim dSx (5) = 4 + 10 = 14 

Now, V u ' c  dSL(Mx(x)) ,  u' may be denoted by (x, A), A ~ dSx(5). The 
right action on dSL(Mx(x))  under the group dSx(5) is defined as 

u = u ' B ,  B~dS,~(5)  

u = (x, A B ) ,  A, B, A B  ~ dSx(5) 

Thus, suppose {Ia} is a set of  natural basis in pseudo-Euclidean space E~ ; 
5 5 the u'  may be considered as the linear mapping  Ea--> Exit ,  and for all 

a = 0 , 1 , 2 , 3 , 5 ,  one has u ' l . = e a .  The  right action on dSL(M~(~)) under 
group dSx(5) may be realized as 

B u '  

Here B is a linear t ransformation in ESx : 

B 

B. Ib  I,,----> b 

NOW, V x ~ M ~ ( . ) ,  the superspherical condition under the dSL frame on 
bundle dSL(M;~(x)) is 

a a b ~,~b~'~ ~ b = - 1 /  h, g.,, = %b W . W~ , rl.b~ W . = 0  

Here the point ~ 4 {~ } e S~(~). 
We give a definition of  the absolute covariant derivative: 

D W ~  = W~II~ dx 4 = ( W~,~ - ~ ~ ~ b ~ ~ F ~ W ~  + ~ b  W~) dx" (3) 

H e r e / / i s  the twofold covariant derivative with respect to the natural frame 
on M~(~) and the dSL frame on the bundle, F ~  is the connection under  
the natural frame, and ~ b  is the dSL connection on bundle dSL(Mx(~)).  
The above dSL connection is equivalent to the following connection defined 
with the dSL frame: 

_ b d x a @ e b  b D e ~ -  ~ . ~  = ~ 0  ( ~ e  b (4) 

In order to leave the length of  the vector invariant under translations, we 
demand d'rla b -~ 0, and we have l~b  = --l~b~, f~b = gta~rffb. Here for the form 
f~b with respect to the dSL connection we have 

~-~b a - -  ~ b  a dx,~ b ~ b - -  = ~ 0 ,  f ~  e dS(5) 
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On dSL(M•(,,)) the transformation law of the dSL connection may be 
obtained through (3): 

O ] ~ f i ~  = ( A - ' ) ~ a a a ~ + ( a - 1 ) ~  dA~,  A c  dSx (5) 

Taking the dSL frame {e'a} = {el, e~}, the connection defined in (4) may 
be written as 

Del - -  B~,'J dx~' |  + ~ '5~, dx~'| (5) 
De'5= ~ 'i dx~' |  ~ 5  

With respect to this frame, one has the Gauss formula and Weingarten 
formula: 

Del = De~IwoO'J | e~5 = B~, dx"  | e j -  IwoO'J | e~ 

Der5 = ikao ~ . ,  (6) - - O ) k j T  1 I] ~2/  ~ i 

Here wq is the second fundamental metric of Ma(x): 

II = oJ.~ dx"  | dx ~ = wijO'i | 0 'j 

Since Mx(~) is an umbilical point supersurface, then we have w.~= 
-IAl~/2g~,~, w~ =-Ihl~/2~70. Thus, expressions (6) may be written as 

/~ v 1/2 t t Del=B~,dx | 0,| (7) 
De'5 = Ihll/20"| e: = Ixl'/:v~ d x " |  

Comparing expression (7) with (5), we obtain 

f~$J-- B mj dx ~, a ;  = Ixl ' / :0 `, a ' ?  = t a ' , :  

o r  

_ ! 

Thus, the dSL connection under the cross section o'(x) on the bundle 
dSL(Mx(~)) is 

~ = ( ~ x b a )  = (  B~, IXl'oVL ) ds,(5) 
ilxl,/~v., 

Here B~, is the Lorentz connection evaluated on the Lie algebra so(3, 1). 
The relation between the three fundamental forms 

I = g.~ d x " |  ~ = (dR, dR)  

II = w ~  dx ~" | dx" = - ( d R ,  de;)  

III = k ~  dx ~ | dx ~ = (del ,  del) 

is 

I I I =  -[h 11/2II = [AI = I 
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where/~ is the vector radius of the supersurface MA(x) under the dSL frame, 
and this relation is unchanged under the transformations of  frames on the 
bundle dSL and arbitrary coordinate transformations on MA(~). 

In the tangent space Tp(dSL(M:,(x))) at p = (x, A), A~ dS~(5), we let 

_!o~b~:  (8) Zla, ~tx 2o'~ lx ~'Xab 

be a horizontal lifting basis expanding the horizontal subspace lip of 
Tv(dSL(M:,(x))). In expression (8) the generators [of group dS~(5)] X~b = 
~:~c~b -- ~b0~ satisfy X~b = --Xb~. Apparently dim Hp = dim Mx(~) = 4, and at 
the same time the right invariance of Z .  is required, i.e., RBZ. (P) = Z~ (PB), 
B ~ dSx(5). We also have 

IIZ.  = c9~, r l[z . ,  z . ]  = [0. ,  0.] = 0 (9) 

Let Tp(dSL(Mx(x)))=HpOVp; then Vp, the vertical subspace of 
Tp(dSL(M:,(x))), is the tangent space of  the fiber H-~(x), and dim Vp = 
dim dSx(5) = 10. Thus, {Z. ,  X~b} may be assumed to be a set of basis in 
Tp( dSt(  Mx(x)) ). 

Their commutation relations are 
e 1 hk  e [ Xab, X~d If = ~fab,~d (Xhk)f 

[Z~, Z~] ~ ~ b v  (10) = - ~ Z ,  - ~ , .  ~,,~ab 

[Z . ,  Xob] = 0 

Here 

ef e f  e f  e f  e f  
f ab, cd = "Qadt~ b S c  -- 17bdSaSc + ~ b c S a ~  d --  ~acS  b S d 

are structure constants of  the group dS~ (5). From the second expression of 
(9), we obtain 

n[z., z~] = n(h[Z~, Z~])= n ( - . ~ z ~ )  = o  

Hence ~ = 0 ,  where h[Z~,, Z~] denotes the horizontal component of 
[Z~,, Z~]. Thus, expressions (9) may be rewritten as 

[X.b, Xca]--!:ef v --  2f l  ab.cd.,Xef 

[Z . ,  Z. ]  - • o ~ b v  (9') 
- -  2 , . ~ -  lz.v/l.ab 

[ z . ,  xo~] = 0 

Since 

1072t cd v "1 [ x o b ,  z , ,  ] = [ X a b ,  a ,, -- ~ - .  ,. . . . . . ,  j 

1 r :77~ e d ) X c d  107:lcd .,eef V 

= 0  
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then 

cd 1 r 07:teS 
O a b ~  ~ = - - ~ J a b ,  efO, u tx 

Here a~b--=aXob is the directional derivative. It is known that ~ b =  
~,b(x, A), A~ dSx(5), i.e., the connection not only relates to space-time 
points, but also depends on the elements of the gauge group. 

On the bundle space dSL(Mx(x)), by using the Jacobi identity 

[xo~, [z~, z~]] : [z~, [ z .  x ~ ] ]  + [ z .  [x~b, z~]] : 0 

and expressions (10), we have 

[Xo~, [Z~, Z.]] = [Z., [Z .  X~]]  + [Z., [Xo~, Z~]] 

=0  
- -  1 ~K cd l o-~ cd r ef ~r 
__ --  ~ ( O a b ~  lxv )Xcd  --  Z.  ~, i~vJ ab, ca*'~.ef 

=0  
1 4,.ef o~cd . ab - -  07;ab and so we have a~b~, e l=  - 2 J ,  b,~a~, ,~, then f f , ~ - 3 * ~ ( X ,  A), A~ dSx(5), 

i.e., the curvature is a function of the coordinates of the space-time points 
and the fiber bundle coordinates. Since 

[ Z u . ,  Z v  ] ~_ [Ol..t lo~ab  Y 1 cd - ~ , - , ~ , , , ,  .,~b, o~ - ~  X ~ ]  
1 ab 1 ab = ~ O t x ~  ~ X a b ' ~ O v ~ t x  X a b  l-4"ab o ~ c d ~ e f  v --  2./ cd, ef ~ p, ~'~ v JXab 

107; ab v 

SO 

..t- 1 ,cab 07'4cd oT',ef ,~b = a ~  ~b _,9 ~ ~b - ~ J ~ , ~ s  " ~  ~ <,~ 

= O ~ b _ & ~ b + . ~  ~ d _ ~ b  ~ (11) 

The curvature ~ corresponds to the strength of the Yang-Mills field. By 
making use of the Jacobi identity 

[Z., [ Z .  Z~]] + [ Z .  [Z~, Z.]]  + [Z~, [Z~, Z~]] = 0 

we obtain the identity of gauge field strength: 

o_~ ab  .4_ ~. 7 o~ ab ..l_ ~" 7 G~ ab = o 
I ~ vA - - v v ~ " A t x - - v A ~ t z v  

Here V~, is the gauge-covariant derivative: 
O.~ab ...3 ~ a b . . . L  l_r  07~cd @ e f  

A ~ ,u.v - -  ~A ~'" i x v ~ 4 . 1 c d ,  e f~ ' eA  ~ l x v  

By making use of the Jacobi identity 

[ g a b ,  [ X c d ,  X e f  ] ]  ''[- [ X c d ,  [ X e f ,  X a b  ] ]  + [ X e f ,  [ X a b ,  X c d  ]]  = 0 
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we obtain the Jacobi identity of  the structure constants of the group dSA (5): 

fcc ' 4 ~dd' ..1- ~ c c '  ,odd'  -1- 4 "cc' 4: "dd' 
a a ' , b b ' J e e ' , c c '  ~ d b b ' , e e ' d a a ' , c c '  ~ J e e ' , a a ' J b b ' , c c '  ~ 0 

Thus, from the expression (11) we may write the dSL curvature as 

a F~j  + IV~j  
~ , ,  = (~;~,,b) = .  IT~j ~ dsx (5) 

Here 

F i v j  = i i i k k j ds(3, 1) O.B~j -c3vB M q- B~kB,. j - B,.jB~k E 

is the Lorentz connection, 
~  ' I 

= , - B..)I,~ W t , , /x  - -  

= Ix l ' /=Z~+(IZl?X = '  v ~ - I A I  ,~ ' / = '  v~)  

is the dSL torsion, and 

- v ~  v ,q  = l,~ l v,,~2 

In the above expressions 

T ~ =  V.,. - V.,~+ B ~ - B ' ~ .  (12) 

is the Lorentz torsion and r e / =  IAI,/~ V~. 

3. DE SITYER-POINCARI~ GRAVITY DESCRIBED BY 
FIBER B U N D L E  

In dSL gravity the frame vector e~ is at a particular position, such that 
Vx ~ Ma(x), 3 M "  and E~I x so that 

ESalx= M'~lx| Nx 

where Nx = {Xx ~ ES~r~l(Xx, Yx)= 0, for all Y• ~ M'}, e's is a basis of  the 
one-dimensional normal space of  M~(x), and Vx ~ MA(~5, 3S4(~), the projec- 
tion center (O~x)) of 4 S~,(x) is on N~. The tangent point of the sphere 4 Sx(x) 
and Mx~x~ is denoted as Qx. Then the radius Ox~,)Qx = 1]AI ~/2 of  the dS 
sphere 4 Sa(x) reflects the localization of the umbilical point supersurface 
Marx), but this is not considered in the dSL frame, and thus the dSL frame 
is an insufficiently localized frame. 

Now let us define the "full-localized" dSP moving frame 

{e*}={ei,~5}= ei, e5 

~ a ~ a i The frame coefficients { W.}, { IVy} are given by { W~} = { V~, 0}, { W~} = 
{0, a/IAI1/2}. Here a is a dimensional constant, and [ a ]  = L -1. For the dSP 
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frame (13) we denote the gauge group by dS;~ (5). Under the action of  dS;~ (5), 
the frame (13) is transformed as 

= Aaeb, 

If  we require 3i= ^b. _ b , ^a.  Ai eb -- Ai eb, 3s = Asea = (a/lh]l/2)e's, we obtain 

A. ~5 IXl  1 /2  5 ~5 Ai ~ , 
A~=A),  A , =  a A,, A s = A s  5, AS-IAII/2A5 

Thus, replacing the frame (1) by the dSP frame (13) and the group dSx(5) 
by dSa(5), and repeating the above procedure for building the dSL frame 
bundle, we may build a dSP frame bundle dSP(M;,(x), ~'~x(5)). 

By use of  the dSP frame we can realize the contraction from the dS 
bundle to the Poincar6 bundle. The commutation relations of generators of 
the group dSx(5) are 

but for the group dSA(5), we choose the generators as 

Xo=~Oj-~jcg, and E=IAI1/2xs=IAI~/2(~5cg~-~,95) 
Ol OL 

Their commutation relations are 

[ X,~, X~,] = n,,Xj~ + njkX,,-  n,kXj,-  nj,X,k 

[ X,j, Pk ] = "qjkVi - -  ' r l i k P j  (14) 

[P,, PJ] = -~22 Xu 

As h --> O, in the neighborhood of the pole point one has 

1 lim Ih l~/2 (~s0~ - ~05) = -- 0i 
h ~ 0  O~ O/ 

Assuming a = 1, the expressions (14) become 

[ Xq, X k , ] ~  so(3, 1) 

[X~, ak] = ~j-ka~ - 7/;kVj 

i.e., the LieAalgebra ~ssa (5) is contracted as the Lie algebra iso (3, 1). Hence, 
the group dSA(5) is contracted as IS0(3 ,  1). 

Below we find the elements of  IS0(3 ,  1) from the elements of  the group 
dSa (5), and obtain the degeneracy of the frame. Under the dSP frame and 
in the neighborhood of the pole point, we let the local dS sphere coordinates 
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be {~a} = {sc~, ~5}; the action of the projective change group dS~ (5) is given 
by 

Here/~ is a nonzero factor. Since the group IS0(3 ,  1) is a projective change 
�9 �9 ~ 5  group keeping the infinite surface lnvarlant, then when ~: = 0, we have 

~5=0. Thus, from the second expression of (15) we obtain ,3,~=0, and 
expressions (15) become 

"5*5 (16) 
/3~ :5 = As~: 

A5 , 4 ~  0; dividing the rhs and lhs of the first Because [A I # 0, Ai = 0, so 
expression in (15) by /3~ 5 and A55~ 5, respectively, we obtain the trans- 
formation 

~ i  - -  i ~ j  ^ i  
- - a j y  +as  

Here )~= ~/~5 and fi i= ~i/sc5 are both four-dimensional projective inhomo- 
geneous coordinates, and 

i_  3~_  Aj ^A; i a j - - ~ - - ~ g ,  ~ = ~  A5 1 i~SO(3, 1) 
-15 .~5 A5 1A[1/2 , aj 

Since A ~ 0, ~ ~ ~ (t~ ~ 0), then under the actions of the contracted group 
IS0(3 ,  1), the transformation formula of the dSL frame becomes 

~ j , 5. J ' a~aSi~ISO(3, 1) (17) = aie j+ ale5 = aiej ,  

Here a~ = 0, {e~} is the Lorentz frame at Ox(~), and {~} is another Lorentz 
frame under IS0(3 ,  1). At the same time, for the fifth frame vector we have 

~ 5  ~ ~ i  ! 5 ~  ~ i  ! asei+ase5 = ases+ es, a~(c IS0(3 ,  1)) = 1 

The above expression may be written in the form 

a ~  , _  , ~ ' ' ( 1 8 )  e5 =~-~ e i  ''r e 5  --- asei + e5 
z !  5 

Here a~(~ IS0(3 ,  1)) ~ 5 = As ~ As .  Combining expression (17) with (18), we 
may write the group IS0 (3 ,  1) as the form 

, a'j e S0(3 ,  1), a5 a real number 

This form is just the matrix fashion of ISO(3, 1) and has been used to build 
the Poincar~ affine frame bundle (Shao Changgui and Xu Banqing, 1986). 
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From expressions (17) and (18), we know that as the gauge group is 
contracted, the dSP frame degenerates into the form {~i, e5}, where, since 
e5 denotes the translation of  the origin of the frame {~i} in the space M"  
under the action of  IS0(3,  1), the frame {e~, es} is a Poincar6 moving frame. 

Since h ~ 0, we have M~(x) ~ M;  then Vx e M, we can obtain a series 
of  frames {~, es}x, which may be considered as a fiber over point x. Taking 
the union P(M)  = I._Jx~M {ei, es}x for all x ~ M, we obtain a Poincar6 affine 
frame bundle P( M ) = P( M, IS0(3, 1)). 

Since, when ) t ~ 0  we have d'Sa(5)oISO(3,1), "~s(5)~iso(3,1), 
Ma(x) ~ RC space-time, and 

{ca} -> {e~, es} (19) 

then we have frame bundle P(Mx(,o, dSA (5))~ frame bundle 

P(M, ISO(3, 1)) 

When the dS gauge group is restricted on its Lorentz subgroup, the 
structure group of  the bundle dSP(Mxoo) and the bundle dSL(M~(,o) both 
take the form 

and the roles of the fifth vectors of  frames on the two bundles are degenerate; 
these two bundles thus both degenerate into their Lorentz subbundle (Shao 
Changgui et al., unpublished) 

L( M:,(x)) = P(Mx(~), d& ( 5 )lso<3,, ~) 

Under the dSP frame (13) the Gauss and Weingarten formulas are 

De~= B~, dx~| "* ^'~" * - -  1O900 t ~  e 5 

D~5 = --:okfflikO'J @ e~ 

Here the second fundamental metric is 

* (20) ogq = --o~r//j 

Under the frame the three fundamental forms of surface theory satisfy the 
following relation: 

I = - a l l =  a2III 

Using expression (20), we may write the Gauss and Weingarten formulas as 

= + I 0 ~ |  e5 De~i B~, dx ~'| ~ * 
(21) 

D$5 = aO" | e~ 
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But under the dSP frame the connection corresponding to expression (4) 
should be written as 

Del= ~ .  dx~| + ~5 ~ * , ~Tt~it~-Je5 
(22) 

i /*  t Des= ~ .5  dx | 

Comparing expression (21) with (22), we obtain ~o,aJ _-"-'~,~J .dx~', .~sc~'-- aOi. 
and O i = I f ~ i s .  Then, under  the cross section o'(x)={ea(x)} on the 
bundle dSP(M~,(x)), the dSP connection is 

For the dSP bundle, with the exception of  the connection, we may build 
the same theory as the dSL bundle. Here we only give the dSP curvature: 

* * (23) 
= ( ~ ' ~ )  = \ alT~, 

~ v GT; b 

Here J i F.~, is the Lorentz curvature, T.~ is the Lorentz torsion, and V ~.~j = 

v ;  N - 
As A -) 0, the dSP bundle is contracted to the principal bundle P ( M ) ,  

the algebra ~ssa(5) is contracted to the Lie algebra iso(3, 1), and then the 
connection of P ( M )  will take its values on the Lie algebra iso(3, 1). Thus, 
the Curvature will also degenerate. Hence, as a -+ 0 we also have 

dSP connection IaV~, 

(, :,) f . v  i + o~ I V u v i  ol ~v j j 
T~,) (V l~v i ,  dSP c u r v a t u r e ,  alT~, --) Poincar6 curvature 

Now we see that taking the connection of the principal bundle P(M) as 
the different components,  we can construct the dSP connection, but the 
latter is a 5 x 5 matrix; thus, the dSP connection and curvature are different 
from those of  the former. The connection and the curvature of  P(M) do 
not have the 5 • 5 matrix form; then the gravitational gauge theory obtained 
from the dSP bundle is not the same as that obtained from the Poincar6 
bundle, unless the former degenerates into the latter. This difference is also 
reflected in the construction of the field equations. 

The dSL curvature and dSP curvature discussed in this paper  are two 
types of  different curvatures; we may obtain at least two types of  dS 
gravitational gauge theories (Cho, 1975; Chang et aL, 1976). 
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4. FIELD E Q U A T I O N S  OF D E  s I T r E R - P O I N C A R I ~  GRAVITY 

The Lagrangian used in dSP gravity is chosen as 

* * 1 
_ _ !  ~ "~ - -  V~Lfm (t~, ~bll~, g.~) -- 4VTr(NO~ff ) + 2 e  

Here 
~g ~e ge 

- ~ V  T r ( ~  ) = - ~ . ~ . ~ b ~ o  

is the Lagrangian of the gravitational gauge field, ~m = ~m(~b, 011~, g ~ )  is 
the Lagrangian of  the matter field, the symbol [[ is the twofold covariant 
derivative with respect to the natural frame and the Lorentz moving frame, 
e is the coupling constant of  dSP gravity, and V det[ = V~ I = (_g)1/2. In ~.~ 

the ordinary partial derivative if,. used in ordinary field theory should be 
replaced by the above twofold covariant derivative, and the metric ~j by 
g.~. Now we take the variation with respect to ~ b  and use the variational 
principle; then the Euler equations are 

1 0 ( ~ m V )  1 _ {O(~,,,V)'~ +O(~gV)__ [O(~gV)'~ 

Applying expression (23), we obtain 

I 1 

"~ " - ~ (24) ~ a b / / ~ , = - -  Sab  K a b  
E 

Here 

1 O(V~,m) 
S~b-  

t~.~ ab V ~ l x  

is the spin current of the matter system, the symbol///is the twofold covariant 
derivative with respect to the natural frame and the dSP frame, and 

( K ~ )  = a I 

where 

From (1) we also find 

"~" i//p --  alTi l l~,  + 
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In order to find the relation between the dSP gravity and general relativity, 
we rewrite equations (24) as the following two sets: 

~ 5  - 2  1 
~//~ = - -  T~ + 3-~ 

O/E 0r 

(25) 
ge /zv - - 1  

Here 

1 a(~mv) 
T ~ = -  

2 V6V~ 

is the mass tensor of matter. When we rewrite the covariant derivative // 
used in the above two sets of equations as the twofold covariant derivative 
with respect to natural and Lorentz frames, the gauge field equations (25) 
become 

,_ T.~ ~- F~ -~FV~ +~F~ - 3  
0l 2 

2~i11~" 2 -)- V~ 

_ 1 T~+ I__~t~,~V~+.c~V~, (26) 
otZle 2ot2I 

"~ - " ~  = - e S ~  (27) Folly eV~EjTq 

where [ ] is the antisymmetric symbol and 
1 I ~ v ~ i  ~Ao~j ~I ,  L A j ~ v i  

t ~ v  = ~ g  l'~Ao-jl~i - -  1~i ~ A j  

r,~ = l g ~  Tr(tA~t A~) - Tr( t "x t~) 

Let 

3 a 2 1 
2 I A, C 

Here A is the cosmological constant, and C is the Einstein gravitational 
constant. Equations (26), (27) may be written as 

_~Till~+ G ~ I  ~ -AV;~" +~Fi3 ~ = - C T ~ + � 8 9  (28) 

~ ~ - - e S ~  (29) Fol ly-  e V~Ej Til - 

Here G ~ -  ~' 1 - Fi -~FV~ is the Einstein tensor. 
Comparing the gravitational gauge field equations (28) and (29) with 

the gravitational gauge field equations of Poincar6 gravity (Shao Changgui 
and Xu Banqing, 1986). 

G~ = - C T ~  + pt~ + p 'r~ 

~ = CS~ + n ~  - p ' T ~  (30) -PFoll~ 
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we see that the differences are that for the dSP gravity there are terms of 
! T / ~ v  3 the covariant divergence -21i11~ and the curvature tensor ~F~ , two terms 

not in the gravitational gauge field equations of Poincar~ gravity. The 
appearance of  the covariant divergence term is based on the matrix fashion 
of  the curvature of dSP gravity. The appearance of an additional curvature 
tensor term is based on the hypothesis that the dS universe has constant 
curvature. In equations (29) one does not find the same cotorsion term H~ 
as in equations (30), which is also based on the dS global invariance of  
the dS universe. The Poincar6 gravity is based on the supposition that the 
space-time is obtained by localizing the flat Minkowski space-time, but the 
de Sitter gravity is based on the supposition that space-time is obtained by 
localizing the dS sphere holding constant curvature. Poincar~ gravity is a 
version of a limiting degeneration of dSP gravity; it is not a subgravity of 
the latter. The appearance of  the additional curvature term 3F~ just reflects 
this effect. 

For the torsion-free case the dSP gravitational gauge field equations 
become 

, , 3 " - - c r ~ + � 8 9  Gi  - A V ~  +~F~ - 
(31) 

~ - - e S ~  f ijll v - -  

Equations (31) indicate that the dSP gravitational gauge field equations 
discussed in this article do not degenerate into extended Einstein-Yang 
equations, except that the dS effect discussed above degenerates. 

5. FIELD E Q U A T I O N S  OF D E  SITFER-LORENTZ GRAVITY 

In finding the field equations, we first suppose that there is no relation 
between the potential ~ b  and the first fundamental metric of the space-time 
manifold. Thus, using a similar method as in dSP gravity to find the field 
equations, we may consider that the V~ contained in the Lagrangian 

- - 8  v o "  i z ~ , b O " a  

is independent of the fifth component of the dSL gravitational potential. 
Thus, we find the field equations 

1 
OZ;/xv ~ab//~ = - -  S~b 

E 

and we can write the' above equations as two sets 

~  + I ( F ~ - 3 I V ~ ) =  2 V~" ITill ~ ---- 
E 

~" ~ ~  FuII~-  e V ~ [ j T i ]  - -  

(32) 

(33) 
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These differ from equations (28) and (29) in that equations (32) and (33) 
contain terms with factors IAI 1/2 and X 1/2 which are relevant to the 
localization of space-time, and thus may be used to discuss the influence 
of space-time localization on the field equations. 

Now suppose that the space-time localization is trivial, i.e., JA l a f =  0; 
the dSL frame bundle will degenerate into a trivial bundle, and suppose 
space-time is torsion free; thus, equations (32), (33) become 

2 
F ~ - 3 I I A J l / 2 v ~  e l  T~ 

Here let 
Fuil~ 

(34) 

(35) 

2 
-3IJAla/2= A, - C (36) 

e l  

Then equations (34), (35) may be written as 

F~ + A V~ = - CT~ (37) 

2 
~'~ = S~ (38) 

In expression (36) the appearance of I may make it possible to choose 
between gauge groups dS(3, 2) and dS(4, 1). 

When the matter system has no spin, equations (37), (38) become 

F~ + A V~ = - C T ~  

Foll~ - 0 

or  

n ~  + Ag~ = - CTr  (39) 

R ~  II ~ = 0 ( 4 0 )  VAO" 

where R~ is the Ricci curvature tensor, and R ~A~ is the Riemann curvature 
tensor. Equations (39) and (40) correspond to the Einstein equations and 
the Yang equations, respectively. 
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